Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474156

RESUMO

Obesity represents a worldwide health challenge, and the condition is accompanied by elevated risk of cardiovascular diseases caused by metabolic dysfunction and proinflammatory adipokines. Among those, the immune-modulatory cathelicidin antimicrobial peptide (human: CAMP; murine: CRAMP) might contribute to the interaction of the innate immune system and metabolism in these settings. We investigated systemic CAMP/CRAMP levels in experimental murine models of atherosclerosis, myocardial infarction and cardiovascular patients. Atherosclerosis was induced in low-density lipoprotein receptor-deficient (Ldlr-/-) mice by high-fat diet (HFD). C57BL/6J wild-type mice were subjected to myocardial infarction by permanent or transient left anterior descending (LAD)-ligation. Cramp gene expression in murine organs and tissues was investigated via real-time PCR. Blood samples of 234 adult individuals with or without coronary artery disease (CAD) were collected. Human and murine CAMP/CRAMP serum levels were quantified by ELISA. Atherosclerotic mice exhibited significantly increased CRAMP serum levels and induced Cramp gene expression in the spleen and liver, whereas experimental myocardial infarction substantially decreased CRAMP serum levels. Human CAMP serum quantities were not significantly affected by CAD while being correlated with leukocytes and pro-inflammatory cytokines. Our data show an influence of cathelicidin in experimental atherosclerosis, myocardial infarction, as well as in patients with CAD. Further studies are needed to elucidate the pathophysiological mechanism.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infarto do Miocárdio , Adulto , Animais , Humanos , Camundongos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
J Mol Med (Berl) ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436713

RESUMO

C1q/TNF-related protein 3 (CTRP3) represents an adipokine with various metabolic and immune-regulatory functions. While circulating CTRP3 has been proposed as a potential biomarker for cardiovascular disease (CVD), current data on CTRP3 regarding coronary artery disease (CAD) remains partially contradictory. This study aimed to investigate CTRP3 levels in chronic and acute settings such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). A total of 206 patients were classified into three groups: CCS (n = 64), ACS having a first acute event (ACS-1, n = 75), and ACS having a recurrent acute event (ACS-2, n = 67). The control group consisted of 49 healthy individuals. ELISA measurement in peripheral blood revealed decreased CTRP3 levels in all patient groups (p < 0.001) without significant differences between the groups. This effect was exclusively observed in male patients. Females generally exhibited significantly higher CTRP3 plasma levels than males. ROC curve analysis in male patients revealed a valuable predictive potency of plasma CTRP3 in order to identify CAD patients, with a proposed cut-off value of 51.25 ng/mL. The sensitivity and specificity of prediction by CTRP3 were congruent for the subgroups of CCS, ACS-1, and ACS-2 patients. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings, with male mice exhibiting higher circulating CTRP3 levels than females. We conclude that circulating CTRP3 levels are decreased in both male CCS and ACS patients. Therefore, CTRP3 might be useful as a biomarker for CAD but not for distinguishing an acute from a chronic setting. KEY MESSAGES: CTRP3 levels were found to be decreased in both male CCS and ACS patients compared to healthy controls. Plasma CTRP3 has a valuable predictive potency in order to identify CAD patients among men and is therefore proposed as a biomarker for CAD but not for distinguishing between acute and chronic settings. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings in men.

3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958808

RESUMO

Understanding the complex interactions between metabolism and the immune system ("metaflammation") is crucial for the identification of key immunomodulatory factors as potential therapeutic targets in obesity and in cardiovascular diseases. Cathelicidin antimicrobial peptide (CAMP) is an important factor of innate immunity and is expressed in adipocytes. CAMP, therefore, might play a role as an adipokine in metaflammation and adipose inflammation. TNFα, cell-free nucleic acids (cfDNA), and toll-like receptor (TLR) 9 are components of the innate immune system and are functionally active in adipose tissue. The aim of the present study was to investigate the impact of TNFα and cfDNA on CAMP expression in adipocytes. Since cfDNA acts as a physiological TLR9 agonist, we additionally investigated TLR9-mediated CAMP regulation in adipocytes and adipose tissue. CAMP gene expression in murine 3T3-L1 and human SGBS adipocytes and in murine and human adipose tissues was quantified by real-time PCR. Adipocyte inflammation was induced in vitro by TNFα and cfDNA stimulation. Serum CAMP concentrations in TLR9 knockout (KO) and in wildtype mice were quantified by ELISA. In primary adipocytes of wildtype and TLR9 KO mice, CAMP gene expression was quantified by real-time PCR. CAMP gene expression was considerably increased in 3T3-L1 and SGBS adipocytes during differentiation. TNFα significantly induced CAMP gene expression in mature adipocytes, which was effectively antagonized by inhibition of PI3K signaling. Cell-free nucleic acids (cfDNA) significantly impaired CAMP gene expression, whereas synthetic agonistic and antagonistic TLR9 ligands had no effect. CAMP and TLR9 gene expression were correlated positively in murine and human subcutaneous but not in intra-abdominal/visceral adipose tissues. Male TLR9 knockout mice exhibited lower systemic CAMP concentrations than wildtype mice. CAMP gene expression levels in primary adipocytes did not significantly differ between wildtype and TLR9 KO mice. These findings suggest a regulatory role of inflammatory mediators, such as TNFα and cfDNA, in adipocytic CAMP expression as a novel putative molecular mechanism in adipose tissue innate immunity.


Assuntos
Ácidos Nucleicos Livres , Receptor Toll-Like 9 , Masculino , Camundongos , Humanos , Animais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Catelicidinas/genética , Catelicidinas/farmacologia , Catelicidinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Expressão Gênica , Ácidos Nucleicos Livres/metabolismo , Regulação da Expressão Gênica , Células 3T3-L1
4.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37629082

RESUMO

Recent investigation has revealed the significant role of Cathelicidin antimicrobial peptide (CAMP) in infection defense and innate immunity processes in adipose tissue. Meanwhile, knowledge of its regulation and functions in metabolic contexts as an adipokine remains sparce. The present study investigated the postprandial regulation of circulating CAMP levels during oral glucose tolerance tests (OGTTs). Eighty-six metabolically healthy volunteers participated in a standardized 75 g-2 h-OGTT setting. The effects of exogenous glucose, insulin, and incretins on CAMP expression in human adipocyte culture (cell-line SGBS) were studied in vitro. CAMP concentrations in blood serum samples were measured by ELISA techniques and adipocyte gene expression levels were quantified by real-time PCR. Of note, base-line CAMP serum quantities were negatively correlated with HDL cholesterol levels as well as with the anti-inflammatory adipokine adiponectin. During the 2 h following glucose ingestion, a significant rise in circulating CAMP concentrations was observed in considerable contrast to reduced quantities of fatty acid binding proteins (FABP) 2 and 4 and dipeptidyl peptidase 4 (DPP4). In SGBS adipocytes, neither differing glucose levels nor insulin or incretin treatment significantly induced CAMP mRNA levels. According to our data, glucose represents a positive postprandial regulator of systemic CAMP. This effect apparently is not mediated by the regulatory impact of glucose metabolism on adipocyte CAMP expression.


Assuntos
Catelicidinas , Glucose , Humanos , Teste de Tolerância a Glucose , Catelicidinas/farmacologia , Incretinas , Insulina , Insulina Regular Humana , Adipocinas
5.
Trends Endocrinol Metab ; 34(11): 718-734, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648561

RESUMO

The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).

6.
Nutrients ; 15(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447348

RESUMO

INTRODUCTION: Obesity and related diseases are among the main public health issues in the western world. They are thought to be caused by a state of chronic, low-grade inflammation. Cathelicidin antimicrobial peptide (CAMP) was recently discovered to be expressed and secreted by adipocytes. Representing a novel immunomodulatory adipokine, CAMP might play an important role in the complex interaction between metabolism and inflammation. METHODS: In a cohort of 80 volunteers, serum samples were collected prior to, and 2 h, 4 h, and 6 h after, oral lipid ingestion. CAMP, fatty acid binding proteins 2 and 4 (FABP-2/-4), and dipeptidylpeptidase-4 (DPP-4) serum concentrations were measured via ELISA. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with free fatty acids, and gene expression levels of CAMP, FABP-4, and DPP-4 were quantified by RT-PCR. RESULTS: The mean base-line CAMP serum concentration was 55.78 ± 29.26 ng/mL, with a range of 10.77-146.24 ng/mL. Interestingly, CAMP serum levels were positively correlated with LDL cholesterol, but negatively correlated with HDL cholesterol and adiponectin. Men exhibited higher CAMP serum concentrations than women, an effect apparently linked to oral contraception in the majority of female participants. In both genders, CAMP serum concentrations significantly decreased in a stepwise manner 4 h and 6 h after oral lipid ingestion. This decline was paralleled by a rise of serum bile acid and triglyceride levels upon lipid ingestion. In human SGBS adipocytes, treatment with free fatty acids did not affect CAMP gene expression, but increased FABP-4 gene expression. CONCLUSIONS: In conclusion, systemic levels of the antimicrobial peptide and novel adipokine CAMP are significantly decreased upon oral lipid ingestion. While this decline might be linked to the simultaneous increase in bile acids, the underlying mechanisms remain to be elucidated. Furthermore, CAMP might indicate a putative novel cardiovascular biomarker of both inflammatory and metabolic relevance in metaflammation and adipose inflammation.


Assuntos
Catelicidinas , Ácidos Graxos não Esterificados , Humanos , Masculino , Feminino , Ácidos Graxos não Esterificados/metabolismo , Adipocinas/metabolismo , Obesidade/metabolismo , Inflamação , Ingestão de Alimentos
7.
Nucleic Acids Res ; 51(9): 4363-4384, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36942481

RESUMO

Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.


Assuntos
DNA Helicases , Recombinação Homóloga , Meiose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Troca Genética , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/genética , Ligação Proteica , Dobramento de Proteína , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/química , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ligação Competitiva
8.
Inn Med (Heidelb) ; 64(4): 393-400, 2023 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-36703082

RESUMO

A 69-year-old female patient and a 70-year-old male patient were admitted to hospital with recurrent, severe hypoglycemic episodes and a typical manifestation of Whipple's triad. In the female, elevated levels of insulin, C­peptide and pro-insulin together with pathological findings during a fasting test proved the presence of an insulinoma, which could be detected by Ga-68-DOTATOC-PET-CT in the pancreas. There was a very rare co-existence of a neuroendocrine Merkel cell carcinoma. In the male, levels of insulin and C­peptide were suppressed and a diagnosis of paraneoplastic hypoglycemia by IGF­2 secretion was made with increased glucose disposal in skeletal muscle proven by 18F­FDG-PET-CT.


Assuntos
Hipoglicemia , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Idoso , Neoplasias Pancreáticas/diagnóstico , Radioisótopos de Gálio , Peptídeo C , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hipoglicemia/diagnóstico , Insulina , Insulina Regular Humana
9.
Inn Med (Heidelb) ; 64(4): 313-322, 2023 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-36346457

RESUMO

Visceral obesity as a component of the metabolic syndrome is characterized by systemic and local inflammation, which can be quantified in organs (metaflammation). This process can be regarded as a chronic, sterile, and low-grade state of inflammation without infection, trauma, tumor or autoimmunity. It is caused by an inflammation of the visceral adipose tissue (adipose inflammation or adipoflammation) due to adipocyte hypertrophy and hyperplasia with increased infiltration by monocytes and macrophages. Important is the presence of proinflammatory, so-called polarized M1 macrophages that are induced by interferon gamma (IFN-γ) and lipopolysaccharides (LPS) with secretion of interleukin (IL)-6, tumor necrosis factor (TNF) and IL­1. In contrast, the anti-inflammatory, so-called polarized M2 macrophages induced by IL­4 and IL-13 with secretion of IL­8 and IL-10 decrease. In addition, the secreted adipokine pattern changes from anti-inflammatory to proinflammatory. Adipocyte necrosis, local hypoxia, dysregulated autophagy, activation of inflammasomes, modulation of toll-like receptors, and epigenetic factors play a complex role. This mechanism results in local insulin resistance and subsequently a systemic insulin resistance of peripheral organs as well as a spillover of local mediators of inflammation into the systemic circulation (measured as obesity C­reactive protein, CRP). The activation of inflammatory signal transduction cascades leads to inhibitory phosphorylation of the insulin signaling pathway and a weakening of the effect of insulin. In parallel, ectopic lipid accumulation occurs in the liver, musculature, pancreas, pericardium and lungs. Diacylglycerol (DAG) activates specific isoforms of protein kinase C (ε in the liver and τ in the musculature), which in turn lead to inhibition of the insulin signaling pathway. Insulin resistance in obesity and type 2 diabetes mellitus is an inflammatory disease. The aim of future translational approaches is an anti-inflammatory, molecularly individualized (precision medicine) treatment in adipose tissue (targeted therapy) and in organs of insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Obesidade/complicações , Insulina/metabolismo , Inflamação , Anti-Inflamatórios/uso terapêutico , Interleucina-6/uso terapêutico
10.
Biomedicines ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38255140

RESUMO

The pleiotropic chemokine chemerin is involved in multiple processes in metabolism and inflammation. The present study aimed to elucidate its regulation in morbid obesity and during therapy-induced rapid weight loss. A total of 128 severely obese patients were enrolled, and their basal anthropometric and clinical parameters were assessed. In total, 64 individuals attended a conservative 12-month weight loss program that included a low calorie-formula diet (LCD), and 64 patients underwent bariatric surgery (Roux-en-Y gastric bypass, RYGB). Blood serum was obtained at study baseline and at follow-up visits after 3, 6, and 12 months. Systemic chemerin concentrations, as well as metabolic and immunological parameters, were quantified. During the 12-month period studied, serum chemerin levels decreased significantly with weight loss after bariatric surgery, as well as with conservative low calorie therapy; however, the effects of RYGB were generally stronger. No substantial associations of systemic chemerin concentrations with therapy-induced improvement of type 2 diabetes and with indicators of liver function and fibrosis were observed. We conclude that systemic chemerin levels decrease in obese individuals during weight loss, regardless of the therapeutic strategy. A potential involvement in weight loss-associated improvement of metabolic disorders and liver fibrosis remains to be further investigated.

11.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430499

RESUMO

Allocation of morbidly obese patients to either conservative therapy options-such as lifestyle intervention and/or low-calorie diet (LCD)-or to bariatric surgery-preferably sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB)-represents a crucial decision in order to obtain sustainable metabolic improvement and weight loss. The present study encompasses 160 severely obese patients, 81 of whom participated in an LCD program, whereas 79 underwent RYGB surgery. The post-interventional dynamics of physiologically relevant adipokines and hepatokines (ANGPTL4, CCL5, GDF15, GPNMB, IGFBP6), as well as their correlation with fat mass reduction and improvement of liver fibrosis, were analyzed. Systemic GDF15 was characterized as an excellent predictive marker for hepatic fibrosis as well as type 2 diabetes mellitus. Of note, baseline GDF15 serum concentrations were positively correlated with NFS and HbA1c levels after correction for BMI, suggesting GDF15 as a BMI-independent marker of hepatic fibrosis and T2D in obese individuals. Specific GDF15 cut-off values for both diseases were calculated. Overall, the present data demonstrate that circulating levels of specific adipokines and hepatokines are regulated with therapy-induced fat loss and metabolic improvement and might, therefore, serve as biomarkers for the success of obesity therapy strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Obesidade Mórbida , Humanos , Obesidade Mórbida/diagnóstico , Obesidade Mórbida/cirurgia , Adipocinas , Diabetes Mellitus Tipo 2/etiologia , Biomarcadores , Cirrose Hepática/diagnóstico , Cirrose Hepática/terapia , Cirrose Hepática/etiologia , Glicoproteínas de Membrana
12.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955609

RESUMO

Endosome-localized Toll-like receptors (TLRs) 3 and 9 are expressed and functionally active in adipocytes. The functionality and role of TLR7 in adipocyte biology and innate immunity of adipose tissue (AT) is poorly characterized. We analyzed TLR7 mRNA and protein expression in murine 3T3-L1 and primary adipocytes, in co-cultures of 3T3-L1 adipocytes with murine J774A.1 monocytes and in human AT. The effects of TLR7 agonists imiquimod (IMQ) and cell-free nucleic acids (cfDNA) on adipokine concentration in cell-culture supernatants and gene expression profile were investigated. We found that TLR7 expression is strongly induced during adipocyte differentiation. TLR7 gene expression in adipocytes and AT stroma-vascular cells (SVC) seems to be independent of TLR9. IMQ downregulates resistin concentration in adipocyte cell-culture supernatants and modulates gene expression of glucose transporter Glut4. Adipocyte-derived cfDNA reduces adiponectin and resistin in cell-culture supernatants and potentially inhibits Glut4 gene expression. The responsiveness of 3T3-L1 adipocytes to imiquimod is preserved in co-culture with J774A.1 monocytes. Obesity-related, adipocyte-derived cfDNA engages adipocytic pattern recognition receptors (PRRs), modulating AT immune and metabolic homeostasis during adipose inflammation.


Assuntos
Ácidos Nucleicos Livres , Resistina , Células 3T3-L1 , Adipócitos/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Diferenciação Celular/genética , Ácidos Nucleicos Livres/metabolismo , Humanos , Imiquimode/farmacologia , Camundongos , Resistina/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
13.
Front Mol Biosci ; 9: 863912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573729

RESUMO

In addition to the endocrine and paracrine systems, peripheral tissues such as gonads, skin, and adipose tissue are involved in the intracrine mechanisms responsible for the formation of sex steroids via the transformation of dehydroepiandrosterone and dehydroepiandrosterone sulfate (DHEA/DHEAS) into potent androgenic and estrogenic hormones. Numerous studies have examined the relationship between overweight, central obesity, and plasma levels of DHEA and DHEAS. The sodium-dependent organic anion transporter Soat (Slc10a6) is a plasma membrane uptake transporter for sulfated steroids. Significantly increased expression of Slc10a6 mRNA has been previously described in organs and tissues of lipopolysaccharide (LPS)-treated mice, including white adipose tissue. These findings suggest that Soat plays a role in the supply of steroids in peripheral target tissues. The present study aimed to investigate the expression of Soat in adipocytes and its role in adipogenesis. Soat expression was analyzed in mouse white intra-abdominal (WAT), subcutaneous (SAT), and brown (BAT) adipose tissue samples and in murine 3T3-L1 adipocytes. In addition, adipose tissue mass and size of the adipocytes were analyzed in wild-type and Slc10a6 -/- knockout mice. Soat expression was detected in mouse WAT, SAT, and BAT using immunofluorescence. The expression of Slc10a6 mRNA was significantly higher in 3T3-L1 adipocytes than that of preadipocytes and was significantly upregulated by exposure to lipopolysaccharide (LPS). Slc10a6 mRNA levels were also upregulated in the adipose tissue of LPS-treated mice. In Slc10a6 -/- knockout mice, adipocytes increased in size in the WAT and SAT of female mice and in the BAT of male mice, suggesting adipocyte hypertrophy. The serum levels of adiponectin, resistin, and leptin were comparable in wild-type and Slc10a6 -/- knockout mice. The treatment of 3T3-L1 adipocytes with DHEA significantly reduced lipid accumulation, while DHEAS did not have a significant effect. However, following LPS-induced Soat upregulation, DHEAS also significantly inhibited lipid accumulation in adipocytes. In conclusion, Soat-mediated import of DHEAS and other sulfated steroids could contribute to the complex pathways of sex steroid intracrinology in adipose tissues. Although in cell cultures the Soat-mediated uptake of DHEAS appears to reduce lipid accumulation, in Slc10a6 -/- knockout mice, the Soat deletion induced adipocyte hyperplasia through hitherto unknown mechanisms.

14.
J Clin Med ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407364

RESUMO

Obesity and type 2 diabetes mellitus (T2D) represent important comorbidities of the metabolic syndrome, which are associated with non-alcoholic fatty liver disease (NAFLD)-related hepatic fibrosis. In total, 160 morbidly obese patients-81 following a low-calorie formula diet (LCD) program and 79 undergoing bariatric surgery (Roux-en-Y gastric bypass, RYGB)-were examined for anthropometric and metabolic parameters at base-line and during 12 months of weight loss, focusing on a putative co-regulation of T2D parameters and liver fibrosis risk. High NAFLD fibrosis scores (NFS) before intervention were associated with elevated HbA1c levels and T2D. Loss of weight and body fat percentage (BFL) were associated with improved glucose and lipid metabolism and reduced risk of NAFLD-related fibrosis, with particularly beneficial effects by RYGB. Both T2D improvement and NFS decrease were positively associated with high BFL. A highly significant correlation of NFS reduction with BFL was restricted to male patients while being absent in females, accompanied by generally higher BFL in men. Overall, the data display the relation of BFL, T2D improvement, and reduced NAFLD-related fibrosis risk during weight loss in morbidly obese individuals induced by diet or RYGB. Furthermore, our data suggest a considerable sexual dimorphism concerning the correlation of fat loss and improved risk of liver fibrosis.

15.
Eur J Nutr ; 61(4): 1919-1929, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34951653

RESUMO

BACKGROUND: The postprandial regulation of angiopoietin-like proteins (Angptls) and their expression in adipocytes is poorly characterized. OBJECTIVE: Circulating Angptl3 and 4 were analyzed in healthy individuals undergoing either an oral lipid tolerance test (OLTT; n = 98) or an oral glucose tolerance test (OGTT; n = 99). Venous blood was drawn after 0, 2, 4, and 6 h during OLTT and after 0, 1, and 2 h during OGTT. Anthropometric and laboratory parameters were assessed and concentrations of Angptls were quantified by enzyme-linked immunosorbent assay. Angptl gene expression in 3T3-L1 adipocytes and in murine adipose tissues and cellular fractions was analyzed by quantitative real-time PCR. RESULTS: Angptl3 concentrations significantly decreased while Angptl4 levels continuously increased during OLTT. Both proteins remained unaffected during OGTT. Angptl3 and Angptl4 were expressed in murine subcutaneous and visceral AT with higher mRNA levels in mature adipocytes when compared to the stroma-vascular cell fraction. Both proteins were strongly induced during 3T3-L1 adipocyte differentiation and they were unresponsive to glucose in mature fat cells. Adipocyte Angptl3 (but not Angptl4) mRNA expression was inhibited by the polyunsaturated fatty acids arachidonic acid and docosahexaenoic acid, whereas nine types of dietary fatty acids remained without any effect. CONCLUSIONS: There is evidence of short-time regulation of Angptl3/4 levels upon metabolic stress. Angptl4 expression is high and Angptl3 expression is low in AT and restricted mainly to mature adipocytes without any differences concerning fat compartments. Whereas dietary fatty acids and glucose are without any effect, omega-3/-6-polyunsaturated fatty acids inhibited Anptl3 expression in adipocytes.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Glucose , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Ácidos Graxos , Teste de Tolerância a Glucose , Humanos , Camundongos , RNA Mensageiro
16.
J Clin Med ; 10(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640356

RESUMO

Meteorin-like protein (Metrnl) is an adipo-myokine with pleiotropic effects in adipose tissue (AT). Its systemic regulation in obesity and under weight loss is unclear. Circulating Metrnl concentrations were analyzed by ELISA in severely obese patients undergoing bariatric surgery (BS) or low calorie diet (LCD). Metrnl mRNA expression was analyzed in human and murine tissues and cell lines by quantitative real-time PCR. About 312 morbidly obese individuals underwent BS (n = 181; BMI 53.4 + 6.8 kg/m2) or LCD (n = 131; BMI 43.5 + 6.7 kg/m2). Serum samples were obtained at baseline and 3, 6, and 12 months after intervention. AT specimen from subcutaneous and visceral adipose tissue were resected during BS. Serum Metrnl levels were lower in type 2 diabetic patients and negatively correlated with HbA1c. In BS and LCD patients, Metrnl concentrations significantly increased after 3 months and returned to baseline levels after 12 months. There was no gender-specific effect. Metrnl mRNA expression did not differ between visceral and subcutaneous AT in n = 130 patients. In contrast, Metrnl gene expression in mice was highest in intra-abdominal AT followed by subcutaneous, peri-renal, and brown AT. In the murine 3T3-L1 cell line, Metrnl expression was high in pre-adipocytes and mature adipocytes with a transient downregulation during adipocyte differentiation. Metrnl expression remained unaffected upon treatment with glucose, insulin, fatty acids, bile acids, and incretins. Polyunsaturated omega-3 and omega-6 fatty acids downregulated Metrnl expression. Systemic Metrnl is transiently upregulated during massive weight loss and gene expression in adipocytes is differentially regulated.

17.
Cells ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440913

RESUMO

The C1q/TNF-related protein 3 (CTRP3) represents a pleiotropic adipokine reciprocally associated with obesity and type 2 diabetes mellitus and exhibits anti-inflammatory properties in relation to lipopolysaccharides (LPS)-mediated effects in adipocytes, as well as monocytes/macrophages. Here, we focused on the influence of CTRP3 on LPS-mediated effects in endothelial cells in order to expand the understanding of a possible anti-inflammatory function of CTRP3 in a setting of endotoxemia. An organ- and tissue-specific expression analysis by real-time PCR revealed a considerable Ctrp3 expression in various adipose tissue compartments; however, higher levels were detected in the aorta and in abundantly perfused tissues (bone marrow and the thyroid gland). We observed a robust Ctrp3 expression in primary endothelial cells and a transient upregulation in murine endothelial (MyEND) cells by LPS (50 ng/mL). In MyEND cells, CTRP3 inhibited the LPS-induced expression of interleukin (Il)-6 and the tumor necrosis factor (Tnf)-α, and suppressed the LPS-dependent expression of the major endothelial adhesion molecules Vcam-1 and Icam-1. The LPS-induced adhesion of monocytic cells to an endothelial monolayer was antagonized by CTRP3. In C57BL/6J mice with an LPS-induced systemic inflammation, exogenous CTRP3 did not affect circulating levels of TNF-α, ICAM-1, and VCAM-1. In conclusion, we characterized CTRP3 beyond its function as an adipokine in a setting of vascular inflammation. CTRP3 inhibited LPS-induced endothelial expression of adhesion molecules and monocyte cell adhesion, indicating an important vascular anti-inflammatory role for CTRP3 in endotoxemia.


Assuntos
Adipocinas/imunologia , Tecido Adiposo/imunologia , Células Endoteliais/imunologia , Perfilação da Expressão Gênica , Inflamação/imunologia , Adipocinas/genética , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Adesão Celular/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
18.
J Clin Med ; 10(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34362056

RESUMO

Data on the quantification of the potentially neurotrophic adipo-myokine METRNL (Meteorin-like protein) in human cerebrospinal fluid (CSF) are lacking and migration of this secreted protein across the blood-brain barrier (BBB) is uncertain. In the present pilot study, METRNL concentrations were quantified by ELISA in paired serum and CSF samples of 260 patients (107 males, 153 females) undergoing neurological evaluation. METRNL was abundant in serum (801.2 ± 378.3 pg/mL) and CSF (1007.2 ± 624.2 pg/mL) with a CSF/serum ratio of 1.4 ± 0.8. Serum METRNL levels were significantly correlated (rho = +0.521) to those in CSF. CSF METRNL concentrations were significantly correlated (rho = +0.480) with albumin CSF/serum ratios. The CSF/serum ratios of METRNL and albumin were positively correlated in Reibergram analysis (rho = 0.498), indicating that raising CSF concentrations of METRNL are mediated by increasing BBB dysfunction. The CSF concentrations of METRNL strongly increased in a stepwise manner along with increasing BBB dysfunction from grade 0 to grade 3 and with rising CSF cell count. CSF/serum ratio of METRNL also increased from grade 0 (1.2 ± 0.7) to grade 3 (3.0 ± 0.2). Furthermore, CSF levels were positively correlated with age. In conclusion, METRNL is a secreted and neurotrophic myokine that crosses over the BBB. CSF concentrations of METRNL increase with BBB dysfunction.

19.
Cytokine ; 148: 155663, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34388476

RESUMO

BACKGROUND AND AIM: CAMP (Cathelicidin antimicrobial peptide) expression in adipocytes is regulated by Toll-like receptor (TLR) agonists. Secreted adipokines such as CTRP-3 have been suggested to participate in innate immune signaling in adipose tissue (AT). This study investigates whether TLR-induced CAMP expression in adipocytes is antagonized by CTRP-3. METHODS: 3T3-L1 adipocytes were co-stimulated with TLR agonists (LPS, MALP-2, Pam3CSK4, pI:C) and recombinant CTRP-3. In a SIRS model, C57BL/6 wild-type mice were intraperitoneally (ip) injected with recombinant CTRP-3 prior to LPS. CAMP expression was analyzed by real-time PCR in AT of wild-type mice and in AT and primary adipocytes from transgenic mice lacking adipocyte CTRP-3 expression. Comparative transcriptome analysis by RNA seq. was applied in CTRP-3 KO adipocytes. RESULTS: In vitro, CTRP-3 antagonized TLR4- and TLR1/2-induced CAMP expression in adipocytes whereas TLR3- and TLR2/6-mediated induction of CAMP was not affected. in vivo, application of exogenous CTRP-3 dose-dependently antagonized LPS-induced CAMP expression in intra-abdominal AT. CAMP expression in total AT and in primary adipocytes of subcutaneous and intra-abdominal AT did not differ between wild-type mice and transgenic mice lacking adipocyte CTRP-3 expression. CONCLUSIONS: The study suggests a hypothetical role of CAMP in host defense not only against Gram-positive bacteria sensed by TLR1/2 and TLR2/6 but also against Gram-negative bacteria sensed by TLR4 and potentially against viruses sensed by TLR3. The machinery of TLR-mediated pro-inflammatory activation of the CAMP gene in adipocytes seems to be partly modulated by secreted adipokines belonging to the growing family of C1q/TNF-related proteins such as CTRP-3.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Peptídeos Antimicrobianos/genética , Regulação da Expressão Gênica , Receptores Toll-Like/metabolismo , Células 3T3-L1 , Adipocinas/deficiência , Tecido Adiposo/metabolismo , Animais , Peptídeos Antimicrobianos/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Síndrome de Resposta Inflamatória Sistêmica/genética , Transcriptoma/genética
20.
Inflammation ; 44(6): 2260-2269, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165676

RESUMO

The anti-inflammatory adipokine CTRP-3 might affect innate immune reactions such as NOD1. The impact of CTRP-3 on NOD1-mediated inflammation in adipocytes and monocytic cells as well as on NOD1 expression was investigated. Murine 3T3-L1 pre-adipocytes and adipocytes as well as human THP-1 monocyte-like cells were co-stimulated with the synthetic NOD1 agonist Tri-DAP and recombinant CTRP-3. Gonadal adipose tissue and primary adipocytes were obtained from a murine model carrying a knockout (KO) of CTRP-3 in adipocytes but not in stroma-vascular cells. Wildtype mice with lipopolysaccharide (LPS)-induced elevated NOD1 expression were treated with CTRP-3. Secreted inflammatory cytokines in cell supernatants were measured by ELISA and mRNA levels were quantified by RT-PCR. Pro-inflammatory chemokine and cytokine secretion (MCP-1, RANTES, TNFα) was induced by NOD1 activation in adipocytes and monocyte-like cells, and MCP-1 and RANTES release was effectively inhibited by pre-incubation of cells with CTRP-3. CTRP-3 also antagonized LPS-triggered induction of NOD1 gene expression in murine adipose tissue, whereas adipocyte CTRP-3 deficiency upregulated NOD1 expression in adipose tissue. CTRP-3 is an effective antagonist of peptidoglycan-induced, NOD1-mediated inflammation and of LPS-induced NOD1 expression. Since basal NOD1 expression is increased by adipocyte CTRP-3 deficiency, there have to be also inflammation-independent mechanisms of NOD1 expression regulation by CTRP-3.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Gordura Intra-Abdominal/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Células 3T3-L1 , Adipócitos/imunologia , Adipocinas/genética , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Gordura Intra-Abdominal/imunologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/genética , Transdução de Sinais , Gordura Subcutânea/imunologia , Gordura Subcutânea/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...